const std = @import("std"); const utils = @import("utils.zig"); const List = std.DoublyLinkedList(u8); pub fn main() !void { var gpa = std.heap.GeneralPurposeAllocator(.{}){}; const alloc = gpa.allocator(); const filename = "inputs/day5.txt"; { const file_reader = try utils.FileReader.init(alloc, filename); defer file_reader.deinit(); const result = try part1(alloc, file_reader.reader()); try std.io.getStdOut().writer().print("Day 5, part 1: {}\n", .{result}); } { const file_reader = try utils.FileReader.init(alloc, filename); defer file_reader.deinit(); const result = try part2(alloc, file_reader.reader()); try std.io.getStdOut().writer().print("Day 5, part 2: {}\n", .{result}); } } const Edge = struct { from: u8, to: u8 }; fn isCorrectlyOrdered(pages: []const u8, edges: std.AutoHashMap(Edge, void)) bool { for (0..pages.len) |i| { for (i + 1..pages.len) |j| { const edge = Edge{ .from = pages[j], .to = pages[i] }; if (edges.contains(edge)) { return false; } } } return true; } fn findIndex(slice: []const u8, value: u8) ?usize { for (0.., slice) |i, x| { if (x == value) { return i; } } return null; } fn findNode(list: List, value: u8) ?*List.Node { var node_ptr_maybe = list.first; while (node_ptr_maybe != null) : (node_ptr_maybe = node_ptr_maybe.?.next) { const node_ptr = node_ptr_maybe.?; if (node_ptr.*.data == value) { return node_ptr; } } return null; } fn topo_sort(elems: []u8, incoming_edges: std.AutoHashMap(u8, List), outgoing_edges: std.AutoHashMap(u8, List)) void { // this function works in-place by splitting elems into an first, sorted part and a later, // unsorted part var _incoming_edges = incoming_edges; var _outgoing_edges = outgoing_edges; // this index marks the first element of the unsorted part of elems var next_unsorted_idx: usize = 0; // step 1: find all nodes with no incoming edges, move them to the sorted part of the list for (next_unsorted_idx..elems.len) |i| { if (_incoming_edges.get(elems[i]) == null) { // if elems[i] has no incoming edges, move it to the end of the sorted list std.mem.swap(u8, &elems[next_unsorted_idx], &elems[i]); // advance end of sorted list by one next_unsorted_idx += 1; } } // step 2: progressively iterate over sorted section, removing outgoing edges and adding nodes // with no incoming edges to the end of the sorted section for (elems) |value| { // if value has outgoing edges... if (_outgoing_edges.get(value)) |outgoing_list| { // iterate over outgoing edges var node_ptr_maybe = outgoing_list.first; while (node_ptr_maybe != null) : (node_ptr_maybe = node_ptr_maybe.?.next) { const node_ptr = node_ptr_maybe.?; const to_value = node_ptr.*.data; if (_incoming_edges.getPtr(to_value)) |incoming_list_ptr| { // cannot fail: we know the edge (value, to_value) existts const node = findNode(incoming_list_ptr.*, value).?; // remove edge incoming_list_ptr.remove(node); if (incoming_list_ptr.len == 0) { _ = _incoming_edges.remove(to_value); // cannot fail: to_elem must be in unsorted section of elems // [next_unsorted_idx..] const to_value_index = next_unsorted_idx + findIndex(elems[next_unsorted_idx..], to_value).?; // std.debug.print("{} {}\n\n", .{ next_unsorted_idx, to_value_index }); std.mem.swap(u8, &elems[next_unsorted_idx], &elems[to_value_index]); next_unsorted_idx += 1; } } else { // we know we have an edge (value, to_value), can't fail unreachable; } } // remove all outgoing edges at once _ = _outgoing_edges.remove(value); } } std.debug.assert(_incoming_edges.count() == 0); std.debug.assert(_outgoing_edges.count() == 0); } fn part1(alloc: std.mem.Allocator, reader: anytype) !u64 { var line_reader = utils.lineReader(alloc, reader); defer line_reader.deinit(); // var elems_set = std.AutoHashMap(u8, void).init(alloc); // defer elems_set.deinit(); // var edge_arena = std.heap.ArenaAllocator.init(alloc); // defer edge_arena.deinit(); var edges = std.AutoHashMap(Edge, void).init(alloc); defer edges.deinit(); // var outgoing_edges = std.AutoHashMap(u8, List).init(edge_arena.allocator()); // var incoming_edges = std.AutoHashMap(u8, List).init(edge_arena.allocator()); while (try line_reader.next()) |line| { if (line.len == 0) { break; } var it = utils.numberParserWithDelimiter(u8, line, '|'); const from = (try it.next()).?; const to = (try it.next()).?; std.debug.assert((try it.next()) == null); // try elems_set.put(from, {}); // try elems_set.put(to, {}); // try edges.append(.{ .from = from, .to = to }); try edges.put(.{ .from = from, .to = to }, {}); // _ = try outgoing_edges.getOrPutValue(from, List{}); // if (outgoing_edges.getPtr(from)) |list| { // const node_ptr = try edge_arena.allocator().create(List.Node); // node_ptr.*.data = to; // list.*.prepend(node_ptr); // } else { // unreachable; // } // _ = try incoming_edges.getOrPutValue(to, List{}); // if (incoming_edges.getPtr(to)) |list| { // const node_ptr = try edge_arena.allocator().create(List.Node); // node_ptr.*.data = from; // list.*.prepend(node_ptr); // } else { // unreachable; // } } // const elems = blk: { // const elems = try alloc.alloc(u8, elems_set.count()); // var it = elems_set.iterator(); // for (elems) |*p| { // p.* = it.next().?.key_ptr.*; // } // std.debug.assert(it.next() == null); // break :blk elems; // }; // defer alloc.free(elems); // topo_sort(elems, incoming_edges, outgoing_edges); // std.debug.print("sorted elems: ", .{}); // utils.printSlice(u8, elems); // std.debug.print("\n", .{}); // for (edges.items) |edge| { // std.debug.print("from: {} to: {}\n", .{ edge.from, edge.to }); // const from_idx = findIndex(elems, edge.from).?; // const to_idx = findIndex(elems, edge.to).?; // std.debug.print("from_idx: {} to_idx: {}\n", .{ from_idx, to_idx }); // std.debug.assert(from_idx < to_idx); // } var update = std.ArrayList(u8).init(alloc); defer update.deinit(); var sum_middle_pages: u64 = 0; while (try line_reader.next()) |line| { update.clearRetainingCapacity(); var it = utils.numberParserWithDelimiter(u8, line, ','); while (try it.next()) |n| { try update.append(n); } std.debug.assert(update.items.len % 2 == 1); // var update_idx: usize = 0; // for (elems) |n| { // if (update.items[update_idx] == n) { // update_idx += 1; // } // if (update_idx == update.items.len) { // const middle_idx = update.items.len / 2; // sum_middle_pages += update.items[middle_idx]; // break; // } // } if (isCorrectlyOrdered(update.items, edges)) { const middle_idx = update.items.len / 2; sum_middle_pages += update.items[middle_idx]; } } return sum_middle_pages; } fn part2(alloc: std.mem.Allocator, reader: anytype) !u32 { _ = alloc; _ = reader; return 0; } test "part1 example" { const alloc = std.testing.allocator; const example = \\47|53 \\97|13 \\97|61 \\97|47 \\75|29 \\61|13 \\75|53 \\29|13 \\97|29 \\53|29 \\61|53 \\97|53 \\61|29 \\47|13 \\75|47 \\97|75 \\47|61 \\75|61 \\47|29 \\75|13 \\53|13 \\ \\75,47,61,53,29 \\97,61,53,29,13 \\75,29,13 \\75,97,47,61,53 \\61,13,29 \\97,13,75,29,47 ; var stream = std.io.fixedBufferStream(example); const result = try part1(alloc, stream.reader()); try std.testing.expect(result == 143); } test "part1 input" { const alloc = std.testing.allocator; const filename = "inputs/day5.txt"; const file_reader = try utils.FileReader.init(alloc, filename); defer file_reader.deinit(); const result = try part1(alloc, file_reader.reader()); try std.testing.expect(result == 5129); } // test "part2 example" { // const alloc = std.testing.allocator; // const example = // \\MMMSXXMASM // \\MSAMXMSMSA // \\AMXSXMAAMM // \\MSAMASMSMX // \\XMASAMXAMM // \\XXAMMXXAMA // \\SMSMSASXSS // \\SAXAMASAAA // \\MAMMMXMMMM // \\MXMXAXMASX // ; // var stream = std.io.fixedBufferStream(example); // const result = try part2(alloc, stream.reader()); // try std.testing.expect(result == 9); // } // test "part2 input" { // const alloc = std.testing.allocator; // const filename = "inputs/day5.txt"; // const file_reader = try utils.FileReader.init(alloc, filename); // defer file_reader.deinit(); // const result = try part2(alloc, file_reader.reader()); // try std.testing.expect(result == 1950); // }