use std::rc::Rc; use crate::error::RuntimeError; use crate::parser::{BinaryOp, Expr, Literal, LogicalOp, Stmt, UnaryOp}; use super::environment::Environment; use super::{LoxFunction, Value}; pub type EvalResult = Result; /*====================================================================================================================*/ pub fn execute(statement: Stmt, env: &mut Environment) -> Result<(), RuntimeError> { statement.execute(env) } /*====================================================================================================================*/ /* trait Eval { fn eval(self, env: &mut Environment) -> EvalResult; } */ impl Literal { fn eval(&self, env: &mut Environment) -> EvalResult { let _ = env; match self { Literal::String(s) => Ok(Value::String(Rc::clone(s))), Literal::Number(num) => Ok(Value::Number(*num)), Literal::Bool(b) => Ok(Value::Bool(*b)), Literal::Nil => Ok(Value::Nil), } } } impl Expr { fn eval(&self, env: &mut Environment) -> EvalResult { match self { Expr::Literal { literal } => literal.eval(env), Expr::Unary { op, expr } => { let arg = expr.eval(env)?; match (*op, arg) { (UnaryOp::Negate, Value::Number(num)) => Ok(Value::Number(-num)), (UnaryOp::Not, Value::Bool(b)) => Ok(Value::Bool(!b)), (UnaryOp::Not, primitive) => Ok(Value::Bool(!primitive.is_truthy())), (op, arg) => Err(RuntimeError::UnaryOpInvalidArgument { op, arg }), } } Expr::Binary { left, op, right } => { use Value::{Bool, Number, String}; let left = left.eval(env)?; let right = right.eval(env)?; match (left, *op, right) { (Number(left), BinaryOp::Add, Number(right)) => Ok(Number(left + right)), (Number(left), BinaryOp::Subtract, Number(right)) => Ok(Number(left - right)), (Number(left), BinaryOp::Multiply, Number(right)) => Ok(Number(left * right)), (Number(left), BinaryOp::Divide, Number(right)) => { if right == 0.0 { return Err(RuntimeError::DivisionByZero); } Ok(Number(left / right)) } (String(left), BinaryOp::Add, String(right)) => { let mut s = std::string::String::with_capacity(left.capacity() + right.capacity()); s += &left; s += &right; Ok(String(Rc::new(s))) } (left, BinaryOp::Equal, right) => Ok(Bool(left == right)), (left, BinaryOp::NotEqual, right) => Ok(Bool(left != right)), (Number(left), BinaryOp::Less, Number(right)) => Ok(Bool(left < right)), (Number(left), BinaryOp::LessEqual, Number(right)) => Ok(Bool(left <= right)), (Number(left), BinaryOp::Greater, Number(right)) => Ok(Bool(left > right)), (Number(left), BinaryOp::GreaterEqual, Number(right)) => Ok(Bool(left >= right)), (String(left), BinaryOp::Less, String(right)) => Ok(Bool(left < right)), (String(left), BinaryOp::LessEqual, String(right)) => Ok(Bool(left <= right)), (String(left), BinaryOp::Greater, String(right)) => Ok(Bool(left > right)), (String(left), BinaryOp::GreaterEqual, String(right)) => Ok(Bool(left >= right)), (left, op, right) => Err(RuntimeError::BinaryOpInvalidArguments { left, op, right }), } } Expr::Logical { left, op, right } => { let left = left.eval(env)?; match op { LogicalOp::Or => { if left.is_truthy() { return Ok(left); } } LogicalOp::And => { if !left.is_truthy() { return Ok(left); } } } let right = right.eval(env)?; Ok(right) } Expr::Grouping { expr } => expr.eval(env), Expr::Variable { name } => env.get(name), Expr::Assignment { name, value } => { let value = value.eval(env)?; env.assign(name, value.clone())?; Ok(value) } Expr::Call { callee, args } => { let callee = callee.eval(env)?; let args = args .iter() .map(|arg| arg.eval(env)) .collect::>>()?; match callee { Value::Function(fun) => fun.call(args, env), Value::ExternFunction(ext_fun) => ext_fun.call(args, env), _ => Err(RuntimeError::NotCallable { callee }), } } Expr::Function { name, param_names, body, } => Ok(Value::function(LoxFunction::new( name, param_names.clone(), body.as_ref().clone(), ))), } } } impl Stmt { fn execute(&self, env: &mut Environment) -> EvalResult<()> { match self { Stmt::Print { expr } => { match expr.eval(env)? { // special case: when printing a string, drop the surrounding "" Value::String(s) => println!("{s}"), val => println!("{val}"), } Ok(()) } Stmt::IfStmt { condition, then_branch, else_branch, } => { let condition = condition.eval(env)?; if condition.is_truthy() { then_branch.execute(env) } else if let Some(else_branch) = else_branch { else_branch.execute(env) } else { Ok(()) } } Stmt::While { condition, body } => { while condition.eval(env)?.is_truthy() { match body.execute(env) { Ok(_) => {} Err(RuntimeError::Break) => break, Err(err) => return Err(err), } } Ok(()) } Stmt::VarDecl { name, initializer } => { let initializer = initializer.eval(env)?; env.define(name.as_ref(), initializer); Ok(()) } Stmt::Block { statements } => { env.enter_scope(); for statement in statements { // on error the current frame gets destroyed anyways, so no need to exit scope statement.execute(env)?; } env.exit_scope(); Ok(()) } Stmt::ExprStmt { expr } => { // expr.eval(env)?; // Ok(Value::Nil) expr.eval(env)?; Ok(()) } Stmt::Break => Err(RuntimeError::Break), Stmt::Return { expr } => { let value = expr.eval(env)?; Err(RuntimeError::Return { value }) } } } } /*====================================================================================================================*/ impl LoxFunction { pub fn call(&self, args: Vec, env: &mut Environment) -> EvalResult { if args.len() != self.arity() { return Err(RuntimeError::WrongArity { name: self.name().to_owned(), arity: self.arity(), given: args.len(), }); } env.push_frame(self.closure().clone()); for (name, value) in std::iter::zip(self.param_names(), args) { env.define(name.as_ref(), value); } let ret_val = match self.body().execute(env) { Ok(()) => Value::Nil, Err(RuntimeError::Return { value }) => value, Err(err) => return Err(err), }; env.pop_frame(); Ok(ret_val) } }